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A transfer-matrix method (TMM) is presented for the development of concentration and flux
profiles in multicomponent diffusion involving any number n of components. From interdiffu-
sion fluxes or concentration gradients available at an initial position xs, the authors derive
expressions for the transfer matrix and its integral so that the concentrations or interdiffusion
fluxes of the components can be obtained at any coordinate x. The TMM requires data for
interdiffusion coefficients, which are obtained as average values over selected regions by the
method of moments developed by Dayananda. Expressions for the concentrations are also
obtained from initial conditions on the fluxes or the concentration gradients. The method is also
applicable to the case when all the concentrations are known at two ends of a region over which
the diffusion coefficients are considered constant. The integration of the fluxes over time, or over
the coordinate x, can be evaluated using the transfer-matrix approach, provided the value of the
interdiffusion flux is given at a given coordinate. The TMM is applicable to any number of
components and can be regarded as a compact generalization of the solutions available for
ternary diffusion couples with constant interdiffusion coefficients. An application of the method
is illustrated with the experimental data for a ternary Cu-Ni-Zn diffusion couple, and the results
are compared with those based on the Fujita-Gosting solution.

Keywords modeling, multicomponent diffusion, transfer matrix

1. Introduction

An analysis of one-dimensional diffusion in n-compo-
nent alloys is normally based on Onsager’s[1] formalism for
Fick’s law,[2] where the interdiffusion flux J̃i (x) of compo-
nent i is defined in terms of (n − 1) independent concentra-
tion gradients by:

J̃i�x� = −�
j=1

n−1

D̃ij
�n�

�Cj�x�

�x
�i = 1, 2, . . . , n − 1�

(Eq 1)

Here, (n − 1)2 interdiffusion coefficients, D̃ij
(n), based on a

laboratory-fixed frame are defined and the concentration Cn
is treated as the dependent variable. The n − 1 equations in
Eq 1 can be solved for the (n − 1)2 interdiffusion coeffi-

cients D̃ij
(n), provided one can set up (n − 1) diffusion

couples, whose diffusion paths intersect at the same com-
position point of intersection.[3] Such a requirement is very
hard to realize experimentally for systems containing three
or more components. Furthermore, the interdiffusion coef-
ficients vary with composition over the diffusion path. Both
these issues were considered by Dayananda and Sohn,[4]

who developed a procedure for evaluating interdiffusion
coefficients as averaged constants over small, selected
ranges of composition along the entire diffusion path of a
single diffusion couple. Through the use of this analysis [4-6]

identified as Dayananda analysis, one can obtain interdif-
fusion coefficients over various selected composition re-
gions within the diffusion zone from one diffusion couple.
The use of this procedure has been recently tested[7] with
individual ternary diffusion couples and has been shown to
yield ternary interdiffusion coefficients comparable to those
determined by the conventional Boltzmann-Matano analysis
at common compositions of intersecting diffusion paths.

In this context the authors have developed a free, down-
loadable software called “MultiDiFlux”[8] to automate the
analysis. This program employs cubic hermite interpolation
polynomials for interpolation,[9] and through a least-square
fit[10,11] of the experimental data the concentrations and
their derivatives are evaluated at the interior element nodes.
The program then evaluates the interdiffusion flux of each
component directly from the experimental concentration
profile Ci(x) from the relation:[5,12]

J̃i�x� =
1

2t �
Ci

−
or Ci

+

Ci�x�

�x − x0� dCi �i = 1, 2, . . . , n�

(Eq 2)
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where t is the time of diffusion and x0 is the location of the
Matano plane[13] for the couple. The concentrations are
functions of the Boltzmann variable,[14] (x − x0)/√t. Here, it
has been assumed that the variation of the molar volume
within the diffusion zone is negligible. The program then
evaluates low-order moments of both sides of Eq 1 over
given x intervals. Treating the interdiffusion coefficients as
average values over these small intervals, one can then gen-
erate sufficient sets of equations so that these coefficients
can be determined[4,7,11] and used to regenerate the initial
input concentration curves.

Similar issues arise when the diffusion coefficients are
already known and initial values of the concentrations or
fluxes are given at a few sections, and one is required to
predict the concentration profiles and fluxes over selected
regions in the diffusion zone. The authors have recently
examined such problems in multicomponent diffusion and
have developed a transfer-matrix method (TMM)[15] for
their solutions. In this approach flux at any section x is
represented in terms of the interdiffusion flux given at a
section xs employing a transfer matrix, where the matrix
elements are Gaussian functions. Next, solutions are gener-
ated for the concentrations of the individual components at
any section x in terms of the interdiffusion fluxes or con-
centration gradients given at a section xs. In addition, solu-
tions for concentrations at various x values are also devel-
oped in terms of the concentrations given at two ends of a
region, utilizing another transfer matrix, where the matrix
elements are error functions. The transfer-matrix approach
is then used for the integration of the interdiffusion flux at
a section x over time, as well as for the integration of flux
over a finite region in the diffusion zone. The applicability
of this method is also examined with the experimental pro-
files of a Cu-Ni-Zn ternary diffusion couple.[16]

2. Transfer-Matrix Solution for Fluxes
and Concentrations

2.1 Fluxes Generated at Any x in Terms of Their Initial
Values at xs

For an isothermal, solid-solid diffusion couple the diffu-
sion zone extends over the coordinate range (x(−) � −�,
x(+) � +�). Let the concentrations of the components Ci(x,
t) be identified by Ci

(−) and Ci
(+) in the terminal alloys of the

couple. The entire diffusion zone can be divided into small
regions with a region s ranging over xs � x � xs+1. From the
equation of continuity �J̃i(x,t)/�x � −�Ci(x,t)/�t, one can
show[12] that at time t:

�J̃i�x,t�

�x
=

�x − x0�

2t

�Ci�x,t�

�x
(Eq 3)

where x0 is the Matano plane and (x − x0)/2t refers to the
velocity of propagation of a concentration level identified at
Ci. Utilizing Eq 1, and the matrix notation, Eq 3 can be
written[15] as:

�

�x
J̃�n��x,t� = −

�x − x0�

2t
�D̃�n��−1 � J̃�n��x,t� (Eq 4)

where the diffusion coefficient matrix is assumed to be in-
vertible. These (n − 1) coupled linear first-order differential
equations in Eq 4 are solved for the interdiffusion fluxes in
the range xs � x � xs+1 with the boundary conditions that
J̃i(xs) are given.

To decouple the equations, one first diagonalizes the ma-
trix D̃(n) using a similarity transformation P such that

P−1 � D̃�n� � P = ��n� (Eq 5)

where �(n) is a diagonal matrix with elements �ij
(n) � di�ij

and �ij is the Kronecker tensor. The same transformation P
diagonalizes (D̃(n))−1 so that P−1 · (D̃(n))−1 · P � (�(n))−1.

The flux vector in the diagonal basis, Ĵ(x,t) denoted with
a carat, is defined to be:

P−1 � J̃�n��x,t� = Ĵ�n��x,t� (Eq 6)

Multiplying Eq 4 from the left by P−1 one obtains the (n −
1) decoupled equations. In vector notation:

�

�x
Ĵ�n��x,t� = −

�x − x0�

2t
���n��−1 � Ĵ�n��x,t� (Eq 4�)

To solve Eq 4� the Peano-Baker method[17] is used with
iterative nested integrations on each component. Integrating
both sides component by component one obtains:

Ĵi�x,t� = Ĵi�xs,t� − �
xs

x

dx�
x� − x0

2t
�di

−1� Ĵi�x�,t�

= exp�−
�x − x0�2 − �xs − x0�2

4t
�di

−1�� Ĵi�xs,t�

(Eq 7)

Multiplying Eq 4� from the left by P, the fluxes can be
converted back into the original basis. In addition, on the
basis of Eq 6 one has:

T �x,xs,t,D̃
�n �� ≡ exp�−

�x − x0�2 − �xs − x0�2

4t
�D̃�n��−1�

= P � �
5 0

exp�−
�x − x0�2 − �xs − x0�2

4t
�d i

−1��
0 5

� � P−1

(Eq 8)

The fluxes are now given by:

J̃�n��x,t� = T�x,xs,t,D̃
�n�� � J̃�n��xs,t� xs � x � xs+1

(Eq 9)

The matrix T(x,xs,t,D̃
(n)) called the transfer matrix,[18,19]

evolves the flux from its initial value J̃(n)(xs,t) at x � xs to
its value at any x in the interval xs � x � xs+1.

The diagonal form of the transfer matrix on the right side
of Eq 8 will be designated by �, with:

Basic and Applied Research: Section I

Journal of Phase Equilibria and Diffusion Vol. 27 No. 6 2006 567



��x,xs,t,D̃
�n�� = �

5 0

exp�−
�x − x0�2 − �xs − x0�2

4t
�di

−1��
0 5

�
=

exp�−
�x − x0�2

4t
���n��−1�

exp�−
�xs − x0�2

4t
���n��−1� (Eq 10)

so that Eq 8 takes the compact form T � P · � · P−1. Note
that the (n − 1)-dimensional transfer matrix can be reex-
pressed in terms of (n − 1) terms involving the powers (0, 1,
2, . . . , n − 2) of the matrix D̃ij

(n) by using the Cayley-
Hamilton theorem.[17,20] Also, the initial condition on the
fluxes may be replaced by one on the concentration gradi-
ents with the help of Eq 1. Hence, on the basis of Eq 9, one
gets:

J̃�n��x,t� = −T�x,xs,t� � D̃�n� �
�C�n��xs,t�

�x
(Eq 11)

It is shown here that the interdiffusion fluxes of all com-
ponents can be determined in each segment of the diffusion
zone once the initial values of either the fluxes or the con-
centration gradients at xs are given. The evolution can be
forward (x > xs) or backward (x < xs) by choosing the
corresponding value of x and xs in the transfer matrix.

2.2 Concentration Profiles from the Initial Fluxes at xs

Once the interdiffusion fluxes are determined every-
where in the diffusion zone, one can determine the concen-
trations in that region through Eq 1:

�

�x
C�n��x,t� = −�D̃�n��−1 � J̃�n��x,t� (Eq 12)

On integrating both sides one has:

C �n��x,t� = C �n��xs,t� − �D̃�n��−1 ��
xx

x

dx�T�x�,xs,t,D̃
�n��� J̃�n��xs,t�

= C �n��xs,t� − �D̃�n��−1

��
xx

x

dx� exp�−
�x − x0�2 − �xs − x0�2

4t
�D̃�n��−1��J̃�n��xs,t�

(Eq 13)

The integral can be performed in the diagonal basis. Alter-
natively, the integral over the transfer matrix is simply the
integral of each matrix element in T performed indepen-
dently. Again, as in Eq 9, the initial condition, J̃(n)(xs,t), in
Eq 13 can be replaced by:

−D̃�n� � ��C�n��x,t�

�x �
x=xs

These integrals are treated in detail in the next section.

2.3 Concentration Profiles from the Initial and Final
Concentrations Ci(xs) and Ci(xs+1)

Some notation is set up first to simplify later derivations.
The integral of the transfer matrix in the diagonal represen-
tation is defined to be �, with:

��x,xs,t, ��n�� = �
xs

x
dx��

5 0

exp�−
�x − x0�2 − �xs − x0�2

4t di
�

0 5
�

=�
5 0

��t di �erf� x − x0

2�t di
� − erf� xs − x0

2�t di
��

0 5
�

� �
5 0

exp��xs − x0�2

4t di
�

0 5
� . (Eq 14)

One can see that the diagonal elements are the usual error
functions that appear in the expressions for the composition.
Here the usual definition of the error function erf(x) �
(2/√�)∫x0d	 exp(−	2) is used. The final expressions in Eq 14
have been factorized as the product of two diagonal matri-
ces for convenience in representing the result.

Equation 14 can be recast in matrix form:

��x,xs,t,�
�n�� = ��t ���n��1�2 � �erf� x − x0

2�t di
�

− erf� xs − x0

2�t di
�� � exp��xs − x0�2

4t di
�

(Eq 15)

where the diagonal matrices erf contain the error-function
terms along the diagonal as shown in Eq 14, and (�(n))1/2 is
the square root of the diagonal diffusion coefficient matrix
�(n), with square roots of the eigenvalues di occurring along
the diagonal.

The integral of the transfer matrix T, which is designated
by E in the standard basis, is then given by:

E�x,xs,t,D
�n�� = P � ���x,xs,t,�

�n��� � P−1 (Eq 16)

Both � and E are (n − 1) × (n − 1) matrices and can be
inverted as long as the diffusion matrix has nonzero eigen-
values.

Since the error function can be expanded in a power
series, one can transform it back to the original basis term-
by-term by suitably inserting P · P−1 � 1. One can therefore
write:
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E�x,xs,t,D
�n�� = P � ��x,xs,t,�

�n�� � P−1

= ��t �D�n��1�2 ��ERF�x − x0

2�t
�D�n��−1�2�

− ERF�xs − x0

2�t
�D�n��−1�2��

× exp��xs − x0�2

4t
�D�n��−1� (Eq 17)

The matrix function ERF is introduced for convenience in
expressing the integrated fluxes in the following.

Returning to the concentration profiles in the interval
[xs, xs+1], one sees that they can be obtained in terms of the
initial and final values of the concentrations Ci(xs,t) and
Ci(xs+1,t) in the interval. First, one writes Ci(xs+1,t), Eq 13,
in terms of the initial fluxes J̃(n)(xs,t). This provides a set of
equations that can be inverted for the initial fluxes in terms
of Ci(xs+1,t) and then substituted back into the expression
for the concentrations at x in the range xs � x � xs+1.
Equation 17 is used to write Eq 16 in the form:

C�n��x,t� = C�n��xs,t� − �D̃�n��−1 � E�x,xs,t,D̃
�n�� � J̃�n��xs,t�

= C�n��xs,t� − ��t �D�n��−1�2

× �ERF�x − x0

2�t
�D�n��−1�2�

− ERF�xs − x0

2�t
�D�n��−1�2��

× exp��xs − x0�2

4t
�D�n��−1� � J̃�n��xs,t� (Eq 18)

Rewriting the first equation of Eq 18 for x = xs+1 allows us
to identify the fluxes at xs in terms of the concentrations at
the two end points of the subregion as:

J̃�n��xs,t� = −�E�xs+1,xs,t,D̃
�n���−1 � D̃�n� � �C�n��xs+1,t� − C�n��xs,t��

(Eq 19)

We then have:

C�n��x,t� = C�n��xs,t� + �D̃�n��−1 � E�x,xs,t,D̃
�n��

× �E�xs+1,xs,t,D̃
�n���−1 � D̃�n� � �C�n��xs+1,t� − C�n��xs,t��

(Eq 20)

The above relation, Eq 20, can be simplified considerably
by using the diagonal representations of D(n)

, (D(n))−1 and
the E matrix (Eq 17). Noting that the product of diagonal
matrices is also a diagonal matrix one obtains:

C�n��x,t� = C�n��xs,t� + P � �
5 0


i

0 5
� � P−1 � �C�n��xs+1,t� − C�n��xs,t��

= C�n��xs,t� + P � ��x,xs,xs+1,x0,t,��n�� � P−1 � �C�n��xs+1,t� − C�n��xs,t��

(Eq 21)

where 
i are given by:


i�x,xs,xs+1,x0,t,di
�n�� =

�erf� x − x0

2�t di
� − erf� xs − x0

2�t di
��

�erf�xs+1 − x0

2�t di
� − erf� xs − x0

2�t di
��

(Eq 22)

Fujita and Gosting[21] derived expressions for the concen-
tration profiles of ternary diffusion couples in terms of error
functions. Equations 21 and 22 generalize their results to
arbitrary number of concentration components. The use of
TMM is illustrated for ternary diffusion[15] to derive error-
function solutions for concentrations over selected regions
in the diffusion zone and to compare them with those of
Fujita and Gosting. An example of such a comparison is
presented in Section 3.

2.4 The Integrated Fluxes

Equation 2 for the interdiffusion flux J̃i(x) can be written
with the integrands expressed in terms of the Boltzmann
parameter (x − x0)/√t. Then the fluxes are given by:[22]

J̃i�x,t� 2�t = �
Ci

�+�

Ci���

��� + ��dCi���� ≡ Ki���,

�i = 1, 2, . . . , n� (Eq 23)

where Ki(�) is the specific value of the integral and depends
on the given � � (x − x0)/√t. Thus, for fixed � one has the
total interdiffusion flux S(n):

S�n� = �
0

t

J̃�n��x,t� dt = K����t = 2t J̃�x,t�

(Eq 24)

over the time interval (0, t) again related to the flux at that
coordinate x at time t. Note that while Ki(�) depends on �,
for a given � it is independent of t. If the interdiffusion
fluxes are known at a specific coordinate, say the Matano
coordinate, the interdiffusion fluxes on the right side of Eq
24 can be expressed in terms of J̃(n)(x0,t) using Eq 11 with
xs replaced by x0. Thus, in terms of the transfer matrix T one
has:

S�n� = 2t T�x,x0,t,D̃�n�� � J̃�n��x0,t� (Eq 25)
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In a similar fashion, the flux can be integrated over a
coordinate range xs to x. One obtains:

�
xs

x
dx�J̃�n��x�,t� = �

xs

x
dx�T�x,xs,t,D̃

�n�� � J̃�n��xs,t�

(Eq 26)

As in Eq 17, the integral can be rewritten over the transfer
matrix T associated with the fluxes in terms of the transfer
matrix E associated with the concentrations, so that:

�
xs

x
dx�J̃�n��x�,t� = E�x,xs,t,D

�n�� � J̃�n��xs,t�

= P � ���x,xs,t,�
�n��� � P−1 � J̃�n��xs,t�

(Eq 27)

In the limit x → �, the error function reaches its asymptotic
value of unity, and Eq 27 reduces to:

lim
x→�

�
xs

x
dx�J̃�n��x�,t� = lim

x→�
E�x,xs,t,D

�n�� � J̃�n��xs,t� = ��t �D�n��1�2

� �1 − ERF�xs − x0

2�t
�D�n��−1�2��

× exp��xs − x0�2

4t
�D�n��−1� � J̃�n��xs,t� (Eq 28)

In the diagonal basis, instead of Eq 28, one obtains the
relation:

�P−1 � lim
x→�

�
xs

x
ds� J̃�n��x�,t�� = ��x = �,xs,t,�

�n�� � �P−1 � J̃�n��xs,t��

= ��t ���n��1�2 � �1 − erf� xs − x0

2�t di
��

� exp��xs − x0�2

4t di
� � �P−1 � J̃�n��xs,t��

(Eq 29)

For xs � x0, the erf matrix reduces to zero and the matrix
exp becomes a unit diagonal on the right side of Eq 29, so
that:

�P−1 � lim
x→�

�
x0

�

dx�J̃�n��x�,t�� = ��t ���n��1�2 � �P−1 � J̃�n��x0,t��,

(Eq 30)

in conformity with earlier derivations.[23,24]

3. Comparison with Experimental Data and
Concluding Remarks

An application of TMM has been carried out with the
experimental concentration profiles of a single-phase (fcc)
ternary Cu-Ni-Zn diffusion couple. The couple was as-
sembled with alloys 2 (73.8Cu-9.5Ni-16.7Zn) and 7
(55.5Cu-44.5Ni) and annealed for 48 h at 775 °C.[16] The
experimental data for concentration profiles for the couple
are presented in Fig. 1. Superimposed on the data are the
concentration profiles fitted with Hermite interpolation

polynomials with the aid of MultiDiFlux software employ-
ing seven selected regions in the diffusion zone, as identi-
fied in Table 1.

The fitted profiles were analyzed by Dayananda analysis
using the zeroth and first moments of concentration gradi-
ents and interdiffusion fluxes. Interdiffusion coefficients
were determined as average values over three selected re-
gions, as shown in Table 2. With these constant diffusion
coefficients as input one obtains the transfer-matrix solu-
tions to the concentrations in each of the regions. These

Table 1 Regions and elements used for fitting with
cubic Hermite interpolation polynomials the
experimental data for the �2 versus �7 Cu-Ni-Zn
ternary diffusion couple annealed at 775 °C for 2 days

Range of region, µm Number of elements

0-90 1
90-190 1

190-260 3
260-310 1
310-330 1
330-380 1
380-500 1

Table 2 Ternary interdiffusion coefficients D̃ij
(3)

(i, j = 1, 2) calculated for two selected regions in the
diffusion zone of the �2 versus �7 couple with the aid
of MultiDiFlux software

Range of
regions, µm D̃11

(3), m2/s D̃12
(3), m2/s D̃21

(3), m2/s D̃22
(3), m2/s

[0, 255] +1.63 × 10−14 −2.26 × 10−15 −8.93 × 10−17 +1.59 × 10−15

[255, 500] +6.76 × 10−15 +3.38 × 10−15 +1.17 × 10−15 +6.07 × 10−15

Fig. 1 Experimental data for the concentration profiles of the
Cu-Ni-Zn couple, 2 versus 7, annealed at 775 °C for 2 days, and
the fitted profiles employing cubic Hermite interpolation polyno-
mials.

Section I: Basic and Applied Research

570 Journal of Phase Equilibria and Diffusion Vol. 27 No. 6 2006



solutions are compared with the concentration profiles ob-
tained from the Fujita-Gosting ternary solutions in Fig. 2.
One can see that the profiles generated by the TMM are
identical to the error-function solutions of Fujita and Gos-
ting. The equivalence of the solutions by the two methods
has been discussed in an earlier paper.[15]

The authors have shown that the TMM provides an ef-
ficient approach to the calculation of fluxes and concentra-
tions in multicomponent diffusion couples. If the concen-
trations are known at the two ends of a subregion, one can
also construct the concentration profile within the subregion
in a manner similar to the work of Fujita and Gosting for
ternary systems. In addition, the use of TMM becomes par-
ticularly attractive for analyzing systems with more than
three components, since detailed analytical solutions con-
taining error functions can be circumvented. The transfer-
matrix representations can also be used when the fluxes are
integrated over time or over a region within the diffusion
zone. Furthermore, as the TMM is a matrix approach for the
analysis of diffusion couples with any number of compo-
nents, one can express solutions in a compact form conve-
nient for computational simulations. The TMM has now
been incorporated in the current version of the MultiDiFlux
program.
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